Extensions 1→N→G→Q→1 with N=C5xC22:C4 and Q=S3

Direct product G=NxQ with N=C5xC22:C4 and Q=S3
dρLabelID
C5xS3xC22:C4120C5xS3xC2^2:C4480,759

Semidirect products G=N:Q with N=C5xC22:C4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C5xC22:C4):1S3 = C5xC23.6D6φ: S3/C3C2 ⊆ Out C5xC22:C41204(C5xC2^2:C4):1S3480,125
(C5xC22:C4):2S3 = C23.6D30φ: S3/C3C2 ⊆ Out C5xC22:C41204(C5xC2^2:C4):2S3480,166
(C5xC22:C4):3S3 = D30:16D4φ: S3/C3C2 ⊆ Out C5xC22:C4120(C5xC2^2:C4):3S3480,847
(C5xC22:C4):4S3 = C22.D60φ: S3/C3C2 ⊆ Out C5xC22:C4240(C5xC2^2:C4):4S3480,851
(C5xC22:C4):5S3 = D30.28D4φ: S3/C3C2 ⊆ Out C5xC22:C4240(C5xC2^2:C4):5S3480,848
(C5xC22:C4):6S3 = D30:9D4φ: S3/C3C2 ⊆ Out C5xC22:C4240(C5xC2^2:C4):6S3480,849
(C5xC22:C4):7S3 = C23.11D30φ: S3/C3C2 ⊆ Out C5xC22:C4240(C5xC2^2:C4):7S3480,850
(C5xC22:C4):8S3 = C22:C4xD15φ: S3/C3C2 ⊆ Out C5xC22:C4120(C5xC2^2:C4):8S3480,845
(C5xC22:C4):9S3 = Dic15:19D4φ: S3/C3C2 ⊆ Out C5xC22:C4240(C5xC2^2:C4):9S3480,846
(C5xC22:C4):10S3 = C5xD6:D4φ: S3/C3C2 ⊆ Out C5xC22:C4120(C5xC2^2:C4):10S3480,761
(C5xC22:C4):11S3 = C5xC23.9D6φ: S3/C3C2 ⊆ Out C5xC22:C4240(C5xC2^2:C4):11S3480,762
(C5xC22:C4):12S3 = C5xDic3:D4φ: S3/C3C2 ⊆ Out C5xC22:C4240(C5xC2^2:C4):12S3480,763
(C5xC22:C4):13S3 = C5xC23.11D6φ: S3/C3C2 ⊆ Out C5xC22:C4240(C5xC2^2:C4):13S3480,764
(C5xC22:C4):14S3 = C5xC23.21D6φ: S3/C3C2 ⊆ Out C5xC22:C4240(C5xC2^2:C4):14S3480,765
(C5xC22:C4):15S3 = C5xDic3:4D4φ: trivial image240(C5xC2^2:C4):15S3480,760

Non-split extensions G=N.Q with N=C5xC22:C4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C5xC22:C4).1S3 = C22:2Dic30φ: S3/C3C2 ⊆ Out C5xC22:C4240(C5xC2^2:C4).1S3480,843
(C5xC22:C4).2S3 = C23.8D30φ: S3/C3C2 ⊆ Out C5xC22:C4240(C5xC2^2:C4).2S3480,844
(C5xC22:C4).3S3 = C23.15D30φ: S3/C3C2 ⊆ Out C5xC22:C4240(C5xC2^2:C4).3S3480,842
(C5xC22:C4).4S3 = C5xDic3.D4φ: S3/C3C2 ⊆ Out C5xC22:C4240(C5xC2^2:C4).4S3480,757
(C5xC22:C4).5S3 = C5xC23.8D6φ: S3/C3C2 ⊆ Out C5xC22:C4240(C5xC2^2:C4).5S3480,758
(C5xC22:C4).6S3 = C5xC23.16D6φ: trivial image240(C5xC2^2:C4).6S3480,756

׿
x
:
Z
F
o
wr
Q
<